Alternative Approaches to Geodesy Ray Hintz Univ. of Maine Raymond.hintz@umit.maine.edu ## The biggest complaint about state plane coordinates - The concept that scale and elevation factor need to be applied to the pythagoreum theorem inverse of coordinates to obtain a ground distance confuses/complicates things - It would be "nice" if grid distance equals ground distance (no factors necessary) - Grid north does not seem to bother people as it is sort of a well defined assumed north - Note grid distance not equaling ground distance is often called "distortion" though use of proper mathematics eliminates it - Maine Dept. of Transportation has created 3 zones (as opposed to 2) – east, central, and west - These are not state plane zones, simply zones use by ME DOT for their work - Scale factor at center of each zone is 1/50000 instead of 1/10000 in Maine East state plane and 1/30000 in Maine West state plane - The problem with this approach is elevation factor is still an issue. - This is because the projections are still defined at the ellipsoid surface - County projections used in Wisconsin and Minnesota - Each county is its own unique Lambert or Mercator projection - The projection is at the average elevation of the county instead of at the ellipsoid – elevation factor is computed relative to that average county elevation instead of sea level - This approach essentially changes the semi-major axis of the ellipsoid by adding the average elevation to it. - The semi-minor axis is recomputed using the flattening (flattening remains the same) - Having the projection at the average elevation of the county minimizes elevation factor "distortion" - Since the zone only covers one county, which is significantly smaller than a 157 mile wide state plane zone, the scale factor stays much closer to one minimizing scale factor "distortion" - In WI and MN in urban areas the combined factor for county projections rarely exceeds 1/100000 and in rural areas rarely exceeds 1/50000 - Thus for most survey applications one can assume a combined factor of one within introducing any significant systematic error if in county coordinates - Note grid north in county projection will not equal grid north in state plane as different central meridian longitude will exist ### County projection advantages - Rigidly defined Lambert or Mercator zones County projection disadvantages - Can software handle projections not on the ellipsoid? - Does county projection north not equaling state plane north cause any problems? - Called Localization or Localizing coordinates - One computes one unique average combined average factor (CAF) for a project (average scale * elevation factors) - Local N = state plane N / CAF - Local E = state plane E / CAF - The survey proceeds in the local coordinate system using plane survey calculations and no scale or elevation factors are required - If one needs to return to state plane - State plane N = local N * CAF - State plane E = local E * CAF - North in the local system will equal state plane grid north as one overall factor was applied. - Two approaches - AR, NC, WY among others each project is assigned a CAF at its inception - TX for example each district has its own pre-defined CAF and all projects in that district use it - Advantages - Very simply mathematics - Grid north equals local north #### Disadvantages - Not mathematically rigid definition of a zone - Need to remember what CAF was used if converting back to state plane - On large projects, or projects with significant elevation change, "distortion" could become significant Scale factor change Maine East Mercator has a scale factor of 0.9999 at its central meridian so it was at the "NAD 27" limit of 1/10000. The distance from central meridian east (or west) to a scale factor of 1.0001 (1/10000) is 79.3 miles. Note 79.3*2 = 158.6 close to estimate of zone width of 157 miles. The distance from central meridian east (or west) to a scale factor of 1.0000 is 56.0 miles. Thus scale change is not linear!!! Scale change is E-W in Mercator so fits areas elongated N-S better (peninsula of Florida) Scale factor change Louisiana offshore is one of the "widest" Lambert zones such that at the central latitude the scale factor is slightly less than 0.9999 The distance from central latitude north (or south) to a scale factor of 1.0001 (1/10000) is 80.0 miles. Note 80*2 = 160 close to estimate of zone width of 157 miles. The distance from central latitude north (or south) to a scale factor of 1.0000 is 57.4 miles. Thus scale change is not linear!!! Scale change is N-S in Lambert so fits areas elongated E-W better (panhandle of Florida) Low Distortion Projections (LDP's) – a recent rage In the 1990's WI and MN created county projections Each zone was not on the ellipsoid but instead at the average ellipsoid height/elevation of the county. Thus a county with an average ellipsoid height of 900 ft. has elevation factor computed by 20906900 / [20906900 + (ellipsoid height – 900)] Thus elevation factor is "closer" to 1.0000! The zone is smaller than state plane so the scale factor is always closer to 1.0000 than in the larger state plane zones. In these initial LDP's semi-major and semi-minor axes of the ellipsoid were "enlarged" by the average ellipsoid height of the county. This changes the value of flattening f = (a-b) / a because the enlargement cancels in the numerator but not in the denominator. Several years later this approach to LDP was "discouraged" because - (1) Each county is it own "datum" because a, b, and f have changed - (2)Lots of production software did not have the capability of zones where a, b, and/or f were altered. - Thus in Wisconsin county projections were redefined by the David Allen Coe of surveying math Alan Vonderohe to - (1) Work in non-altered a,b,f projections. Mercator stayed the same but Lambert was changed to a one standard parallel projection instead of the state plane two standard parallel approach. - (2)Coordinates in the new system will match the old system to within 5 mm. Thus a least squares solution was used to "best fit" the new projection parameters to fit the old system. #### One parallel Lambert - (1)Central meridian longitude same as in two parallel - (2)Latitude of one parallel usually the center of the zone instead of two latitudes where scale factor = 1 - (3) False easting same as in two parallel - (4) False northing same as in two parallel - (5)Scale factor at the one parallel latitude not necessarily one or less than one like in state plane Mercator Thus less parameters than in the two parallel Lambert of state plane and earlier county projections LDP's where one did not have to "back" in to an existing old county coordinate system Both Oregon and Iowa now have LDP county projection systems. Latitude and longitude origins are the center of the county. False Easting and Northing are some logical values to make that county's coordinates look different than adjoining counties. Scale factor at origin = 1 / average elevation factor Thus if average ellipsoid height of county was 2000 ft. Elev. Factor = 20906000 / 20908000 = 0.999904343Scale factor at origin = 1 / .999904343 = 1.000095666 Thus combined factor at center of county (the origin) is 1.00000000 !!!!!! Thus grid distance = ground distance. In reality through trial and error the scale factor at the origin is often shrunk slightly as that makes a CAF of 1 cover more portion of the county as it will be slightly less than one in middle and slightly greater than 1 on edges. In more reality ellipsoid height change is random across a county so the logic is different in each case. - (1) Dividing coor. by CAF vs. (2) defining a LDP??? - (1) Is simpler and only requires remembering a CAF and a spread sheet type calculation. - (1) Preserves state plane grid bearing - (2) Is a true projection (modified state plane) - (2) Is a rigorous application of geodesy - (2) Requires a program to allow and recognize user definition of projection parameters of (Mercator in Main) of - (a)Longitude at central meridian - (b)Latitude origin - (c)False northing - (d)False easting - (e)Scale Factor at central mer. = 1 / elev. factor. Example – 10 mile area around campus – works great as elevation difference is small (aka cheating in this example) ### All results are in meters. LDP's are simple pythagoreum theorem inverse. | Geodetic | Mercator La | ambert Geode | etic ellip ho | gt Geodetic/Merc. | |-----------------------------------------------------------------------|--------------|-----------------------|---------------|-------------------| | RAY M84 7671.2843 | 7671.2944 | 7671.2959 | 15.23 | .999998683 | | RAY STIL 4633.6295 | 4633.6217 | 4633.6214 | 34.71 | 1.000001683 | | RAY 4 3064.5585 | 3064.5686 | 3064.5688 | 2.43 | .999996704 | | RAY THEW 890.4139 | 890.4157 | 890.4157 | 11.93 | .999997978 | | RAY MECC 10529.182 | 28 10529.195 | 52 10529.1963 | 17.12 | .999998822 | | M84 MECC 16014.250 | 8 16014.267 | ' 2 16014.2669 | 18.69 | .999998976 | | 4 MECC 7789.6238 | 7789.6469 | 7789.6486 | 5.90 | .999997035 | | 4 to MECC is 3 ppm !! RAY to THEW is 2 ppm !! ave .999998555 | | | | | | Notice all LDP distances are greater than geodetic except RAY to STIL | | | | | | which is because of STIL's higher ellip. hgt. | | | | | Thus you could now "tweek" the scale factor at central meridian to make the grid distances smaller except that will bring RAY to STIL not as close in comparison. Lets play with Mercator change Mercator factor 1.000003686 * .999998555 = 1.000002241 (-446309) and try again Mercator Geodetic ellip hgt Geodetic/Merc. Geodetic 15.23 RAY M84 7671 2843 7671 2834 1.000000117 RAY STIL 4633.6295 4633.6149 34.71 1.000003151 3064.5585 3064.5642 2.43 RAY 4 .999998140 RAY THEW 890.4139 890.4144 11.93 .999999438 RAY MECC 10529.1828 10529.1800 17.12 1.000000266 M84 MECC 16014.2508 16014.2440 18.69 1.000000425 4 MECC 7789.6238 7789.6356 5.90 .999998485 ave 1.00000003 wow!! Next I averaged all Maine East Mercator scale factor to get .9999026580 and averaged all ellipsoid heights to get 17.046 m = 55.93 ft and obtained an elevation factor of 0.999997325 to obtain a CAF of 0.999899983 which was used to localize the state plane coordinates. Geodetic Localized Geodetic ellip hgt Geodetic/Localized 15.23 RAY M84 7671.2843 7671.2848 .999999935 RAY STIL 4633.6295 4633.6168 34.71 1.000002741 RAY 4 3064.5585 3064.5639 2.43 .999998238 RAY THEW 890.4139 890.4142 11.93 .999999663 RAY MECC 10529.1828 10529.1885 17.12 .999999459 M84 MECC 16014.2508 16014.2634 18.69 .999999213 4 MECC 7789.6238 7789.6430 5.90 .999997535 ave .999999541 wow again!! The simple averaging tends to give the weight to areas with more points and obviously if the CAF was now tweeked by 1/.999999541 things would get closer. Be careful If overlaying on orthophotos you have to convert your coordinates back to the projection of the orthophotos. Document the CAF or LDP parameters in a survey report or on a plan. I wish our coordinates were latitude longitude and coordinate geometry would work with it but that is not the CAD world we live in. Changes gears – Alternative GPS processing #1 In post processed GPS we have been convinced more CORS stations will help us get better OPUS solutions. What if you could use static post-processed GPS and get OPUS accuracies with use of zero base stations? - Precise Point Positioning (PPP) instead of differential (you must get bored hearing me blab about this) - http://webapp.geod.nrcan.gc.ca/geod/toolsoutils/ppp.php?locale=en - This requires initially getting a user name and password but the service is free. - The antenna type and H.I. is read from the header of the Rinex file - Single frequency is allowed, Glonass is processed, and kinematic is allowed. - Sounds too good to be true? - In two hours PPP and OPUS are very similar for dual frequency data. - PPP slowly deteriorates faster than OPUS-RS for shorter observation times - Single frequency using PPP seems to be 5-10 times less accurate than dual frequency for the same observation time Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? Chris RIZOS, Volker JANSSEN, Craig ROBERTS and Thomas GRINTER, Australia - Available at - https://www.fig.net/pub/fig2012/papers/ts09b/ TS09B_rizos_janssen_et_al_5909.pdf High-performance (i.e. high-accuracy and high-productivity) RT-PPP has been demonstrated, both in a commercial sense (Trimble's RTX) and by researchers (QZS testing). However, CORS network densities similar to those for RTK/NRTK-GNSS techniques are required. While the provision of real-time IGS products and the finalisation of industry-agreed data formats will give a significant boost to RT-PPP, the challenge of transmitting such data to user receivers remains. Furthermore, it is debateable that RT-PPP will ever challenge RTK/NRTK-GNSS techniques on the grounds that it requires less or no CORS infrastructure. The results so far suggest that the reduction in CORS infrastructure is not significant if "network-based" PPP techniques are used. Paradoxically, CORS networks will play a large role in providing the corrections required to achieve RT-PPP results with centimetre-level accuracy. Because the need for CORS networks will not disappear, the authors contend that while PPP will be a useful addition to the GNSS "toolkit", DGNSSbased techniques and services will still be a popular user option for many years to come because the justification for the establishment of CORS has not been weakened by recent developments in PPP. But note a lot of CORS stations really really helps RTK GPS! A lot of RTK GPS also really really helps VRS (Virtual Reference Station) which has been available from Maine Department of Transportation for free for approximately a year. - True RTN (Real Time Network) solutions - To enhance the solution vendors presently offer solutions that utilize multiple permanent bases in a "best fit" solution. - Vendors utilize the raw data at the bases to estimate what the raw data would look like at a base receiver at your job site – hence it is called a "virtual reference base station" - VRS. - The concept has been thoroughly tested by estimating what interpolated raw data would look like at a permanent base derived from neighbors, and comparing it to the actual raw data. - By placing the VRS next to you (the rover) the error due to varying atmosphere at base and rover has been eliminated. - Alternative #1 to VRS - FKP instead of placing a virtual base station on the job site interpolation is used to resolve what corrections should be applied to a field unit - Alternative (2) to VRS - The most significant amount of work to alternatives to VRS is in direct solution of vectors from multiple bases to a rover and performing a field "adjustment/best fit" of the vectors. It could be thought of as a real time OPUS type solution. - Most of the alternative to VRS solutions now produce one vector from the closest base station that is a product derived from multiple base stations. - This is called "MAX" by Leica - RTN solutions - In all the three types of RTN solutions the RTCM being produced is partially processed instead of truly raw satellite information - The base stations in the network are being used to correct the raw data in an area to what it would look like if satellite position errors, atomic clock errors, and atmosphere errors have been eliminated - The real time atmosphere correction is in its infancy stage compared to the other corrective models. - Going rogue - https://www.navcomtech.com/navcom_en_U S/products/equipment/cadastral_and_bound ary/starfire/starfire.page - Starfire is a John Deere implementation of real-time precise ephemeris modeling that sends information to users via John Deere communication (not John Deere GPS) satellites - Thus it is using a series of base stations to create a precise ephemeris that is sent to users - The claim is 5 cm. accuracy real-time. - Trimble joins the dark side! - http://www.trimble.com/agriculture/correction services/centerPointRTX-satellite.aspx - The new Trimble® CenterPoint™ RTX™ correction service delivers GPS or GNSS enabled, repeatable 1.5" (3.8 cm) corrections via satellite directly to your receiver. CenterPoint RTX works with the built-in receiver in your existing Trimble TMX-2050™ display, FmX® integrated display, CFX-750[™] display, or AG-372 GNSS receiver. Eliminating the need to purchase additional radio hardware or cellular data plans. http://www.trimble.com/positioningservices/pdf/whitepaper_rtx.pdf - RTX Positioning: The Next Generation of - cm-accurate Real-Time GNSS Positioning - The RTX (Real Time eXtended) positioning solution is the technology resulting from the employment of a variety of innovative techniques, which combined provide users with cm-level real time position accuracy anywhere on or near the earth's surface. - This new positioning technique is based on the generation and delivery of precise satellite corrections (i.e. orbit, clocks, and others) on a global scale, either through a satellite link or the internet. The innovative aspects of the new solution can be divided into different categories, which directly relate to the areas that have represented different levels of limitation on making global high accuracy positioning possible. These areas are: - a) Integer level ambiguities derivation; - b) Real-time, high accuracy satellite corrections generation; - c) Data transmission optimization; - d) Positioning technology. - RTN solutions - In all the three types of RTN solutions the RTCM being produced is partially processed instead of truly raw satellite information - The base stations in the network are being used to correct the raw data in an area to what it would look like if satellite position errors, atomic clock errors, and atmosphere errors have been eliminated - The real time atmosphere correction is in its infancy stage compared to the other corrective models. #### VRS can be used for post processed GPS. The Maine DOT web site will create a Rinex file for you at a defined latitude longitude ellipsoid height that is derived from the surrounding base stations and is already partially corrected for GPS clock and satellite path errors. It has pulled a rabbit out the hat for me - (1)A very short time occupation (battery died) processed with VRS but not from CORS - (2) Very noisy long occupation single frequency obtained fixed ambiguity solutions from VRS but not from CORS Last but not least Can we build our own geoid models??? This might be critical in 2022 and we are required to still fit to existing NGVD 88 vertical. Example in Florida #### WE HAVE COMPLETED THE CUSTOM GEOID FILE FOR THE STATE OF FLORIDA. The Florida Custom Geoid Model, "FPRNGD16", expands on the NGS "Geoid12b" in two ways: - (1) The number of points used by FPRNGD16 was increased by nearly 50 percent over that used by Geoid12b. Geoid12B uses 2470 points in its hybrid model while FPRNGD16 has added 1002 points to the model. - (2) Geoid12b does not fit used points exactly, FDOT has improved to make the hybrid model fit closer. In the FPRNGD16 model it was decided to use 0.08 meters as a tolerance where GPS benchmarks would be rejected - this resulted in 118 of the 3472 total points being removed. The FPRNGD16 hybrid geoid model has a root-mean-square error (RMS) of fit for the GPS benchmarks of 0.008 meters. The corresponding RMS of the Geoid12b hybrid model is 0.022 meters (both computed after excluding those misfits larger than 0.08 meters). The FPRNGD16 hybrid geoid model has 3025 GPS benchmarks that fit better than 0.01 meters. The corresponding Geoid12b hybrid model has 1712 points which fit better than 0.01 meters. The FPRN geoid model is of NGS standard "bin" format gridded to the NGS standard of one minute of latitude and longitude. Surveyors should have the opportunity to create their own geoid models or contribute to local data banks that are maintained by local or state agencies. Questions?????